Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
J. Res. Natl. Inst. Stand. Technol. ; 126:33, 2022.
Artículo en Inglés | Web of Science | ID: covidwho-1791943

RESUMEN

The development of an international, precompetitive, collaborative, ultraviolet (UV) research consortium is discussed as an opportunity to lay the groundwork for a new UV commercial industry and the supply chain to support this industry. History has demonstrated that consortia can offer promising approaches to solve many common, current industry challenges, such as the paucity of data regarding the doses of ultraviolet-C (UV-C, 200 nm to 280 nm) radiation necessary to achieve the desired reductions in healthcare pathogens and the ability of mobile disinfection devices to deliver adequate doses to the different types of surfaces in a whole-room environment. Standard methods for testing are only in the initial stages of development, making it difficult to choose a specific UV-C device for a healthcare application. Currently, the public interest in UV-C disinfection applications is elevated due to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the respiratory coronavirus disease 19 (COVID-19). By channeling the expertise of different UV industry stakeholder sectors into a unified international consortium, innovation in UV measurements and data could be developed to support test methods and standards development for UV healthcare equipment. As discussed in this paper, several successful examples of consortia are applicable to the UV industry to help solve these types of common problems. It is anticipated that a consortium for the industry could lead to UV applications for disinfection becoming globally prolific and commonplace in residential, work, business, and school settings as well as in transportation (bus, rail, air, ship) environments. Aggressive elimination of infectious agents by UV-C technologies would also help to reduce the evolution of antibiotic-resistant bacteria.

2.
J. Res. Natl. Inst. Stand. Technol. ; 126:29, 2022.
Artículo en Inglés | Web of Science | ID: covidwho-1791942

RESUMEN

Data for interpreting virus inactivation on N95 face filtering respirators (FFRs) by ultraviolet (UV) radiation are important in developing UV strategies for N95 FFR disinfection and reuse for any situation, whether it be everyday practices, contingency planning for expected shortages, or crisis planning for known shortages. Data regarding the integrity, form, fit, and function of N95 FFR materials following UV radiation exposure are equally important. This article provides these data for N95 FFRs following UV-C irradiation (200 nm to 280 nm) in a commercial UV-C enclosure. Viral inactivation was determined by examining the inactivation of OC43, a betacoronavirus, inoculated on N95 FFRs. Different metrological approaches were used to examine irradiated N95 FFRs to determine if there were any discernible physical differences between non-irradiated N95 FFRs and those irradiated using the UV-C enclosure. Material integrity was examined using high-resolution scanning electron microscopy. Form, fit, and function were examined using flow resistance, tensile strength, and particle filtration measurements. A separate examination of filter efficiency, fit, and strap tensile stress measurements was performed by the National Personal Protective Technology Laboratory. Data from these metrological examinations provide evidence that N95 FFR disinfection and reuse using the UV-C enclosure can be effective.

3.
Journal of Research of the National Institute of Standards and Technology ; 126, 2021.
Artículo en Inglés | Scopus | ID: covidwho-1380069

RESUMEN

The National Institute of Standards and Technology (NIST) hosted an international workshop on ultraviolet-C (UV-C) disinfection technologies on January 14-15, 2020, in Gaithersburg, Maryland, in collaboration with the International Ultraviolet Association (IUVA). This successful public event, as evidenced by the participation of more than 150 attendees, with 65 % from the ultraviolet technology industry, was part of an ongoing collaborative effort between NIST and the IUVA and its affiliates to examine the measurement and standards needs for pathogen abatement with UV-C in the healthcare whole-room environment. Prior to and since this event, stakeholders from industry, academia, government, and public health services have been collaboratively engaged with NIST to accelerate the development and use of accurate measurements and models for UV-C disinfection technologies and facilitate technology transfer. The workshop served as an open forum to continue this discussion with a technical focus centered on the effective design, use, and implementation of UV-C technologies for the prevention and treatment of healthcare-associated infections (HAIs) in complex hospital settings. These settings include patient rooms, operating rooms, common staging areas, ventilation systems, personal protective equipment, and tools for the reprocessing and disinfecting of instruments or devices used in medical procedures, such as catheters and ventilators. The critical need for UV-C technologies for disinfection has been amplified by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), stimulating an even greater emphasis on identifying testing and performance metrology needs. This paper discusses these topics based on the international workshop and community activities since the workshop, including a public World-Wide-Web-based seminar with more than 500 registered attendees on September 30, 2020;an international conference on UV-C technologies for air and surface disinfection, December 8-9, 2020;and a webinar on returning to normalcy with the use of UV-C technologies, April 27 and 29, 2021. This article also serves as an introduction to a special section of the Journal of Research of the National Institute of Standards and Technology, where full papers address recent technical, noncommercial, UV-C technology and pathogen-abatement investigations. The set of papers provides keen insights from the vantage points of medicine and industry. Recent technical developments, successes, and needs in optics and photonics, radiation physics, biological efficacy, and the needs of future markets in UV-C technologies are described to provide a concise compilation of the community's efforts and the state of the field. Standards needs are identified and discussed throughout this special section. This article provides a summary of the essential role of standards for innovation and implementation of UV-C technology for improved patient care and public health. © 2021 National Institute of Standards and Technology. All rights reserved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA